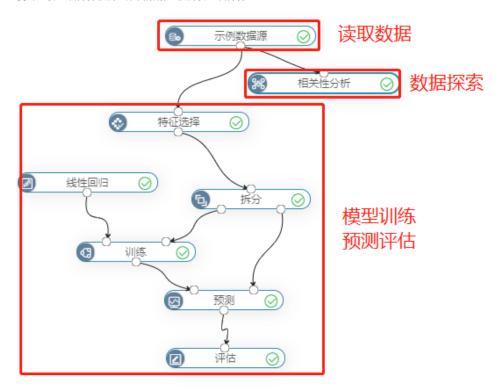
数据挖掘-线性回归


概述

一种常用的回归方法,它是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计方法,通过凸优化的方法进行求解,以达到预测评估的效果。

概述示例

示例

使用"波士顿房价预测"案例数据,预测波士顿房价。

其中,相关性分析是为了分析特征变量与目标变量的相关性系数,方便特征选择进入模型训练。 线性回归的参数如下:

参数 名称	值	说明
归一化	正则化	详情请参考 归一化 介绍说明。
	标准化	
	最小最大值归一化	
	最大绝对值归一化	
最大迭 代数	参数范围为: >=0的整数,默认值 为10	算法的最大迭代次数,达到最大迭代次数即退出。
		最大迭代次数的值越大,模型训练更充分,但会耗费更多时间。
混合参数	参数范围为: [0,1]的数,默认值 为0	控制惩罚类型,平方误差损失函数中的 ρ ,参数范围为: $[0,1]$ 的数。其中: 0 表示L2惩罚, 1 表示L1惩罚, $0^{\sim}1$ 表示L1和L2惩罚的结合。
		对模型系数惩罚(或称正则化)可减少模型过拟合。
正则参数	参数范围为: >=0的数,默认值为: 0。	正则项系数,损失函数中的 。
		正则化可以解决模型训练中的过拟合现象;
		正则项系数越大,模型越不会过拟合。

epsilon	参数范围为: >1的数。默认值为 1.35	huber损失函数中的 δ; 调节损失函数,用于控制算法模型的健壮性; epsilon 越大,损失函数对异常点惩罚就越大,也就是对异常点越敏感;
收敛阈 值	参数范围为: >=0的数,默认值为: 0.000001。	收敛误差值。 收敛误差值,当损失函数取值优化到小于收敛阈值时停止迭代。
损失函	squaredError	可待优化的损失函数,用于衡量模型的输出值和真实值之间的差距。
数	huber	squaredError表示平方误差,huber表示平滑平均绝对误差。